Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes.

نویسندگان

  • I Giardino
  • D Edelstein
  • M Brownlee
چکیده

Intracellular sugars are more reactive glycosylating agents than glucose. In vitro nonezymatic glycosylation of basic fibroblast growth factor (bFGF) by fructose, glucose-6-phosphate (G6P), or glyceraldehyde-3-phosphate (G3P) reduced high affinity heparin-binding activity of recombinant bFGF by 73, 77, and 89%, respectively. Mitogenic activity was reduced 40, 50, and 90%. To investigate the effects of bFGF glycosylation in GM7373 endothelial cells, we first demonstrated that GLUT-1 transporters were not downregulated by increased glucose concentration. In 30 mM glucose, the rate of glucose transport increased 11.6-fold, and the intracellular glucose concentration increased sixfold at 24 h and fivefold at 168 h. The level of total cytosolic protein modified by advanced glycosylation end-products (AGEs) was increased 13.8-fold at 168 h. Under these conditions, mitogenic activity of endothelial cell cytosol was reduced 70%. Anti-bFGF antibody completely neutralized the mitogenic activity at both 5 and 30 nM glucose, demonstrating that all the mitogenic activity was due to bFGF. Immunoblotting and ELISA showed that 30 mM glucose did not decrease detectable bFGF protein, suggesting that the marked decrease in bFGF mitogenic activity resulted from posttranslational modification of bFGF induced by elevated glucose concentration. Cytosolic AGE-bFGF was increased 6.1-fold at 168 h. These data are consistent with the hypothesis that nonenzymatic glycosylation of intracellular protein alters vascular cell function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonenzymatic Glycosylation In Vitro and in Bovine Endothelial Cells Alters Basic Fibroblast Growth Factor Activity

Intracellular sugars are more reactive glycosylating agents than glucose. In vitro nonenzymatic glycosylation of basic fibroblast growth factor (bFGF) by fructose, glucose-6-phosphate (G6P), or glyceraldehyde-3-phosphate (G3P) reduced high affinity heparin-binding activity of recombinant bFGF by 73, 77, and 89%, respectively. Mitogenic activity was reduced 40, 50, and 90%. To investigate the ef...

متن کامل

The Relationship of Secretion and Activity of Recombinant Factor IX with N-Glycosylation

Background:  Human coagulation factor IX (hFIX) is a glycoprotein with two N-glycosylation sites at the activation peptide. Since the activation peptide is removed in mature hFIX, the exact role of N-glycosylation is unclear. To investigate the role of N-glycosylation in the secretion and activity of hFIX, we inhibited N-glycosylation by tunicamycin in the stable Human Embryonic Kidney (HEK)- c...

متن کامل

Study of Nonenzymatic Glycation of Transferrin and its Effect on Iron -Binding Antioxidant Capacity

Objective(s) Nonenzymatic glycosylation (glycation) occurs in many macromolecules in aging and diabetes due to exposure of biomolecules to high level of glucose. Glycation can changes function, activities and structure of many biomolecules. Considering this important role of transferrin (Trf) in iron transport and antioxidant activity in plasma this study was carried out to investigate the eff...

متن کامل

Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus.

Expansion of extracellular matrix with fibrosis occurs in many tissues as part of the end-organ complications in diabetes, and advanced glycosylation end products (AGE) are implicated as one causative factor in diabetic tissue fibrosis. Connective tissue growth factor (CTGF), also known as insulin-like growth factor-binding protein-related protein-2 (IGFBP-rP2), is a potent inducer of extracell...

متن کامل

Leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro.

Using an in vitro model in which endothelial cells can be induced to invade a three-dimensional collagen gel to form capillary-like tubular structures, we demonstrate that leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro. The inhibitory effect was observed on both bovine aortic endothelial (BAE) and bovine microvascular endothelial (BME) cell, and occurred irrespective of the ang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 94 1  شماره 

صفحات  -

تاریخ انتشار 1994